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Large Deviations for Expanding Transformations with
Additive White Noise
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Large-deviations estimates for the autocorrelations of order k of the random
process Zn=,(Xn)+!n , n�0, are obtained. The processes (Xn)n�0 and (!n)n�0

are independent, !n , n�0, are i.i.d. bounded random variables, Xn=T n(X0),
n # N, T: M � M is expanding leaving invariant a Gibbs measure on a compact
set M, and ,: M � R is a continuous function. A possible application of this
result is the case where M is the unit circle and the Gibbs measure is the one
absolutely continuous with respect to the Lebesgue measure on the circle. The
case when T is a uniquely ergodic map was studied in Carmona et al. (1998).
In the present paper T is an expanding map. However, it is possible to derive
large-deviations properties for the autocorrelations samples (1�n) �n&1

j=0 Zj Zj+k .
But the deviation function is quite different from the uniquely ergodic case
because it is necessary to take into account the entropy of invariant measures
for T as an important information. The method employed here is a combination
of the variational principle of the thermodynamic formalism with Donsker and
Varadhan's large-deviations approach.

KEY WORDS: Level-2 large deviations; expanding maps; Gibbs states;
entropy; Markov process; additive white noise.

1. INTRODUCTION

Suppose that (Vn)n�0 is a random process in the probability space
(0, F, P) where each Vn takes values in a locally compact metric space S
(the phase space of the process). Let M1(S) be the space of probability
measures on B(S), endowed with the weak topology; the set B(S) is the
_-field of the Borel subsets of S.
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The empirical means for (Vn)n�0 are

Ln(w, } )=
1
n

:
n&1

k=0

$Vk(w)( } ), w # 0 (1.1)

The level-2 large deviation theory for (Vn)n�0 deals with estimates of the
type

lim
n � +�

1
n

P(Ln # F )�& inf
& # F

I(&) (1.2)

and

�
n � +�

1
n

ln P(Ln # G)�& inf
& # G

I(&) (1.3)

for all closed F and open G, subsets of M1(S). The functional I(&) is lower-
semicontinuous in the weak topology; it is called ``rate functional'' or
``level-2 entropy function.'' One says that the process satisfies a level-2
Large Deviation Principle (LDP) with rate functional I( } ).

The level-1 LDP for (Vn)n�0 deals with means (1�n) �n&1
k=0 Vk . The

analogous to (1.2) and (1.3) have F and G as subsets of S.
In a recent work, Carmona et al.(1) proves the existence of a level-2

LDP for a class of Markov processes (Vn)n�0 given by

Vn=(Xn , !n , !n+1), n�0 (1.4)

where !1 , !2 ,... are i.i.d. random variables with common distribution ' and

Xn=T n(X0) (1.5)

T n is the group of the iterates of a bijective uniquely ergodic transforma-
tion on the unit circle, preserving the Lebesgue measure *, X0 being the
random variable describing the position on the circle and distributed
according to *. The processes (Xn)n�0 and (!n)n�0 are independent.

In the above mentioned article, the final goal was to investigate large
deviation properties of the autocorrelation of order k of the process Zn=
,(Xn)+!n where , is a continuous real function on the circle. We refer the
reader to A. Lopes and S. Lopes(8) for example where such kind of model
appears and for general results.

By assuming k=1 (in order to simplify the arguments), the method
employed in ref. 1 consists, as a first step (and the more difficult one), in
obtaining a LDP for the empirical means of (1.4). The second step is to use
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the contraction principle to obtain a LDP for the autocorrelations of
order 1

Mn=
1
n

:
n&1

j=0

ZjZ j+1 , n�1

by noticing that ZnZn+1 is a continuous functional of Vn . At level 1
analysis we assume that the measure ' has compact support.

Under the above assumptions, the Markov process in (1.4) is ergodic
in the sense of having a unique stationary distribution, which is *_'_'.
In this case, Carmona et al.(1) established a level 2 LDP for (Vn)n�0 in the
probability space (S N, _(C), Pxyz) where S=M_R_R is the phase space
of the process, _(C) is the _-field of the cylinder sets of SN, and Pxyz( } ) is
the distribution of the process when the initial distribution is _(x, y, z)( } ),
(x, y, z) # S. The upper and lower bounds in (1.2) and (1.3), respectively,
were obtained by employing Donsker and Varadhan's(3) approach.

For Markov processes having a unique stationary distribution,
Donsker and Varadhan's method consists, roughly speaking, in proving
that

I(&)=& inf
, # W

|
S

ln
6,
,

d&, & # M1(S) (1.6)

is the level 2 entropy function of the process. In (1.6)

6,(v)=|
S

,(u) 6(v, du) (1.7)

6(v, du) is the transition function given by

6((x, y, z), d(x1 , y1 , z1))=$T(x)(dx1) $z(dy1) '(dz1) (1.8)

and

W=[,: S � R : , is continuous, _a, b such that

0<a�,(v)�b<+�, \v # S ] (1.9)

In the present paper we use the same approach as in ref. 1 but now
assuming that T is not uniquely ergodic anymore. Consequently, (Vn)n�0

is a Markov process with more than one stationary measure and the
natural question to ask for is in what extent is still possible to have large
deviations results. Since the lack of ergodicity of Vn comes from Xn , we
must specify the class of transformations T: M � M we are going to deal
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with as well as the class of initial distributions of (Vn)n�0 for which we are
able to derive large deviations estimates.

The concept of ``equilibrium state'' or ``Gibbs state'' is closely related
with the question raised above. One says that a T-invariant probability
measure +� is an equilibrium state for the continuous function �: M � R if
it attains the supremum

P(�)# sup
+ # MT (M ) {| � d++h+(T )= (1.10)

where MT (M ) is the class of all T-invariant probability measures with sup-
port M, h+(T ) is the Kolmogorov-Sinai entropy (see ref. 12) of the map T
with respect to the T-invariant probability measure +. The functional P( } )
is called the ``topological pressure'' of � (see refs. 12 and 9). It is worth to
point out that, in the case of large deviations of a bijective uniquely ergodic
transformation T and an absolutely continuous invariant measure of the
circle, Kolmogorov-Sinai entropy does not play any role. Note that there
exists uniquely ergodic transformations (not bijective) with positive entropy.

The existence of equilibrium states for any � # C(M ), C(M ) being the
space of real continuous functions in M, is a consequence of the upper-
semicontinuity of h+(T ) as a function of +. However, an equilibrium state
+� is not unique for many continuous functions (see ref. 12). For expanding
maps (therefore, not bijective anymore), the uniqueness of +� holds for
Holder continuous functions. A continuous transformation T in a compact
metric space M is an expanding map, if there exists =>0 and 1<*<+�
such that for all x, y with d(x, y)<=, d(T (x), T ( y))�*d(x, y). Rele-
vant examples of expanding maps are the shift in the Bernoulli space
[1, 2,..., d ]N and one-dimensional maps obtained from the foliations of
certain hyperbolic dynamical systems (see refs. 7, 9, and 11).

By using the variational principle of Thermodynamic formalism,
Kifer(5) and Lopes(6) proved relations (1.2) and (1.3) for the empirical means

`n
x=

1
n

:
n&1

k=0

$T k(x) , x # M (1.11)

with P#m # M1(M ) satisfying some conditions to be specified later. Notice
that m is the distribution of X0 .

In Kifer's(5) approach, roughly speaking, this method consists in
proving that

Qm(�)# lim
n � +�

1
n

ln |
M

exp _n | � d`n
x& dm(x) (1.12)
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exists for all continuous function �; Qm(�) is called the ``m-generalized
pressure'' of �. The next step is to show that the level-2 entropy function
is the Legendre transform of the generalized pressure in the space M1(M ).
It is possible to show that the topological pressure P(�) is equal to Qm(�)
when m is the ``maximal entropy measure'' (the one that maximizes the
entropy h+(T )); this measure may also be seen as the equilibrium state of
�#0.

Kifer assumed that m satisfies condition

(K1) _. # C(M ), \$>0, \n>0, \x # M,

(A$(n))&1�m(U$(x, n, M )) exp {&n |
M

. d`n
x=�A$(n)

where A$(n)>0, limn � +� (1�n) ln A$(n)=0 and

U$(x, n, M )=[ y # M : d(T j (x), T j ( y))<$, \0� j�n&1].

Note that m is coupled to the chosen .. If m satisfies condition (K1)
and it is a T-invariant probability measure, then � . dm+hm(T )=0
whence m is an equilibrium state for . and P(.)=0 (see basic properties
of equilibrium states in ref. 9, Chapter 3).

In Proposition 3.2, (5) it was proved that, for m satisfying (K1) and for
any � # C(M ),

Qm(�)# lim
n � +�

1
n

ln |
M

exp {n |
M

� d`n
x= dm(x)=P(.+�) (1.13)

where P( } ) was introduced in (1.10).
The operator Qm( } ) is convex and weakly continuous. Its Legendre

transform Im(+), + # M1(M ), is convex and weakly lower-semicontinuous.
From the duality property,

Qm(�)= sup
+ # M1(M ) \| � d+&Im(+)+ , � # C(M ) (1.14)

Hence, the definitions of P( } ) in (1.10) implies that

Im(+)={&| . d+&h+(T ), if + # MT (M )
(1.15)

+�, otherwise

where . is the one associated with m in (K1). Notice that, if m # MT (M )
then Im(m)=0.
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Since M1(M ) is compact and Im( } ) is weakly lower-semicontinuous
(T is such that h+(T ) is upper-semicontinuous) then, for each � # C(M ),
there exists +�, m # MT (M ) such that Qm(�)=� � d+�, m&Im(+�, m) or,
equivalently,

P(.+�)=| (.+�) d+�, m+h+�, m
(T ) (1.16)

Such measure +�, m is called an equilibrium state for � with respect to the
generalized pressure Qm( } ). Note that such measure depends on � and m.
When m is the maximal entropy measure, then +�, m=+� according to the
previous notation of equilibrium state associated to �.

In the variational method, the existence of the limit in (1.12) is enough
for obtaining the upper bound (1.2) with rate functional Im( } ). The lower
bound is more delicate: assumptions on the uniqueness of equilibrium
states are necessary.

Lopes(6, 7) studied, specifically, level 1 and level 2 large deviations for
(Xn)n�0 when M is compact, T is an expanding map of degree d and X0

is distributed according to the ``maximal entropy measure;'' it is a special
case of Gibbs measure (� is constant). Among the possible invariant
measures for an expanding map T of the circle there is one that is
absolutely continuous with respect to the Lebesgue measure (see ref. 9 for
reference). This measure is sometimes called SBR measure and it is mixing.
In most of the cases of expanding maps the maximal entropy measure is
not the SBR measure.

In this paper, in order to study level-2 large deviations for (Vn)n�0 in
(1.4), the main assumptions are that T has upper-semicontinuous entropy
and satisfies condition

(K2) T: M � M is such that for each + # MT (M ), for all, $>0, there
exists a T-invariant probability measure +1 , weakly close to +, and a
Holder continuous function �� such that

h+1
(T )>h+(T )&$

and +1 is the unique solution of

h&(T )+|
M

�� d&=P(�� ).

Moreover, m # M1(M ) satisfies condition (K1), and the equilibrium states
with respect to the generalized pressure Qm( } ) are unique for Holder con-
tinuous functions. The initial distributions for (Vn)n�0 are assumed to be
of the type m_$( y, z) with y, z # R.
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It is worth to remark that expanding maps satisfy the above assump-
tions as well as condition (K2) (see Theorem 8 in ref. 7). So, in this paper,
one can regard T: M � M as expanding. The method employed here is a
mixture of the variational principle and Donsker and Varadhan's
approach.

Let P+( } ), + # M1(S), be the probability measure on the measurable
space (SN, _(C)) induced by the transition function 6 in (1.8). The
measure + is the initial distribution of the Markov process (Vn)n�0 . In par-
ticular, if +=m_$( y, z) we have P+=Pm, y, z . The corresponding expecta-
tion is denoted by Em, y, z .

The main result in this paper is the level-2 Large Deviation Principle
for (Vn)n�0 in the probability space (S N, _(C), Pm, y, z( } )). The explicit
form for the rate functional is

Im(&)=Im(?1&)+I(&) (1.17)

Im( } ) given in (1.15) and I( } ) is the functional in (1.6) which, in Section 3,
is proved to be equal to

I(&)={|S
ln

a
a12

d&, & # M0
(1.18)

+�, otherwise

where

M0 ={& # M1(S) : ?1 & # MT(M ), &<<?1 &_'_', (1.19)

?12&=?13&T &1, |
S

|ln a�a12 | d&<+�=
a(x, y, z)=

d&
d(?1&_'_')

(x, y, z) a12(x, y)=|
R

a(x, y, z) d'(z)

?i &, ?ij & are the i- and ij-marginals of &, and

&T &1(A_B_C )=&(T &1(A)_B_C ),

for any measurable rectangle A_B_C.
It follows from uniqueness of equilibrium states that when m # MT

0 (M)
and . is Holder continuous then the infimum of Im( } ) in a compact set not
containing +_'_' is positive (see Lemma 3.3(b)). Therefore, the probabil-
ity of such compact sets decays exponentially fast.
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In Section 2 we prove the upper bound by taking into account the
limit in (1.13) and the fact that (Vn)n�0 is a Markov process. We use
Donsker and Varadhan's(3) approach but keeping in mind that the process
is not uniquely ergodic (has more than one stationary distribution).

In Section 3 we prove the lower bound. The main property we shall
use there is condition (K2). We also use results contained in ref. 1; again
Donsker and Varadhan's method is used.

2. UPPER BOUND

In this paragraph we shall prove the upper bound in (1.2) for the pro-
cess (Vn)n�0 in (1.4). The map T: M � M is assumed to be expansive and
M a compact metric space.

Clearly, for each n,

Ln(w, } )=
1
n

:
n&1

k=0

$(Xk , !k , !k+1)(w)( } ), w # SN (2.1)

is a random probability measure in the space (SN, _(C)). In this space we
shall consider the family of probability measures Pm, y, z( } ), with y, z # R,
and m # M1(M ) satisfying condition (K1).

For each w # SN, Ln(w, } ) # M1(S). Let Qn
m, y, z( } ) be the distribution of

Ln on B(M1(S)), i.e.,

Qn
m, y, z(A)=Pm, y, z[Ln # A], A # B(M1(S)). (2.2)

Theorem 2.1. Let m # M1(M ) satisfy condition (K1). Then, for
any closed F/M1(S),

lim
n � +�

1
n

ln Qn
m, y, z(F )� & inf

& # F
Im(&)

where

Im(&)={&| . d?1 &&h?1&(T )+|
S

ln
a

a12

d&, & # M0
(2.3)

+�, otherwise

M0 being the set in (1.19). The function h?1&(T ) is the Kolmogorov-Sinai
entropy of the T-invariant probability measure ?1&.
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Proof. Let , # W (this set is defined in (1.9)) and � # C(M ). Let
e&W=,�u, u=6,. Let EQn

m, y, z be the expectation associated to the distribu-
tion introduced in (2.2). Then

EQ n
m, y, z _exp {&n |

S
(W&�) d+=&

=Em, y, z _exp {&n |
S

(W&�) dLn(w, d(x1 , y1 , z1))=&
=|

M
exp { :

n&1

k=0

�(T k(x))= Exyz exp \& :
n&1

k=0

W(Vk)+ dm(x)

The Markov property implies that

Ev[exp(&[W(V0)+ } } } +W(Vn&1)]) 6Vn&1]=,(v), \v # S, n�1

Since , # W, _K>0 such that

Ev _exp {& :
n&1

k=0

W(Vk)=&�K

and we get

Em, y, z _exp { :
n&1

k=0

�(Xk)= exp {& :
n&1

k=0

W(Vk)=&
�K |

M
exp { :

n&1

k=0

�(T k(x))= dm(x)

Then, for F/M1(S),

exp {&n sup
+ # F \|S

(W&�) d++= Qn
m, y, z(F )

�K |
M

exp { :
n&1

k=0

�(T k(x))= dm(x)

and, by taking into account (1.13), we may write

lim
n � +�

1
n

ln Qn
m, y, s(F )�sup

+ # F \|S
(W&�) d+++Qm(�) (2.4)
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The above inequality holds for all , # W and � # C(M ). Then

lim
n � +�

1
n

ln Qn
m, y, z(F )�inf

,, � _sup
+ # F

|
S

(W&�) d++Qm(�)&
Up to now, F is any measurable subset of M1(S). Let F/�k

i=1 Fi , F i

measurable. In this case

lim
n � +�

1
n

ln Qn
m, y, z(F )

� inf
F1 ,..., Fk

F/�
k
i=1 Fi

sup
1�i�k

inf
,, � _sup

+ # Fi
|

S
(W&�) d++Qm(�)&

If F is compact, one can prove as in ref. 2, where a closely related
situation is considered, that the right hand side of the above inequality is
less or equal to

sup
+ # F

inf
,, � _|S

(W&�) d++Qm(�)&
On the other hand,

sup
+ # F

inf
,, � _|S

(W&�) d++Qm(�)&
=& inf

+ # F {&inf
, |

S
W d++sup

� _| � d?1 +&Qm(�)&=
=&inf

+ # f
[I(+)+Im(?1+)]

where Im( } ) and I( } ) are defined in (1.15) and (1.6) (or (1.18)), respectively.
Therefore, we have proved the upper bound for compact sets.

For going from compact to closed sets, we observe that the family of
distributions in (2.2) is exponentially tight because, for all x # M,
(Qn

xyz( } ))n�1 is exponentially tight (see Lemma 4.1 in ref. 1) and

Qn
m, y, z(A)=Em(Qxyz(A)), A # B(M1(S)) K

3. LOWER BOUND

In this part we shall prove the inequality in (1.3) for the process
(Vn)n�0 in (1.4) satisfying the conditions specified in Section 1. The proof
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of the lower bound is much more delicate. We shall use the uniqueness
condition for equilibrium states given by (K2) as well as Donsker and
Varadhan's approach(3) as was employed by Carmona et al.(1)

To obtain the estimate from below for Pm, y, z[Ln # S(+, =)], where
S(+, =) is an open sphere contained in M1(S), we shall use a ``generalized
Crame� r transformation'': we construct a measure +n absolutely continuous
with respect to m, a functional 8+(Vn : n�0), and a new probability P$+n, y, z

given by

P$+n, y, z(A)=|
A

8+(w) dPm, y, z(w), A # _(C)

such that, with large P$+n, y, z-probability, the process Ln , n�0 falls in a
neighborhood of +.

Let us define

I� (&)=& inf
, # W

|
S

ln
6,
,

d&, & # M1(S) (3.1)

where W is the set in (1.9) and 6, is defined in (1.7). For convenience, we
have changed the notation of the functional in (1.6).

The functionals Im( } ) and I( } ) are defined in (1.15) and (1.18), respec-
tively. The set M0 is given in (1.19).

The proof of the following lemma is similar to the proof of Lemma 3.2
in ref. 1 and it is omitted.

Lemma 3.1. (a) If & # M0 then I� (&)<+�.

(b) If I� (&)<+� and ?1& # MT (M ) then & # M0 .

(c) I� (&)=I(&).

Lemma 3.2. The stationary distributions for the Markov process
(Vn)n�0 in (1.4) are of the type &=+_'_' with + # MT(M ).

Proof. Similarly to the proof of Lemma 2.5 in ref. 3, one can show
that I(&)=0 if and only if & is a stationary distribution for (Vn)n�0 .

Let &=+_'_', + # MT (M ). Clearly I(&)=0. Then & is stationary for
(Vn)n�0 .

Let & # M1(S) be stationary for (Vn)n�0 . Then I(&)=0<+� and
?1 & # MT (M ). Hence, Lemma 3.1 implies that & # M0 . Also, for all
measurable rectangle A_B_C,

|
S

6((x, y, z), A_B_C) d&(x, y, z)=&(A_B_C )
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However, for any &,

|
S

6((x, y, z), A_B_C ) d&(s, y, z)=?13&(T &1(A)_B) '(C )

Since & # M0 then ?12&=?13 &T &1 so that the right hand side of the above
equality is equal to ?12&(A_B) '(C ). Hence, the stationarity of & implies
that

&(A_B_C )=?12 &(A_B) '(C)

Therefore, &=+_' with + # M1(M_R) and ?1&=?1 + # MT (M ). We shall
prove that +=?1&_'.

Since &=+_' we have

?13&(A_B)=&(A_R_B)=+(A_R) '(B)=?1+(A) '(B)

that is, ?13&=?1+_'. Similarly, one can show that ?13&T &1=?1+_'.
Since ?12 &=?13&T &1 we have ?12&=?13&=?1 &_'. Therefore, &=+_' is
of the type ?1&_'_' with ?1& # MT (M ). K

The following lemma is a consequence of Lemma 3.1 and Lemma 3.2.

Lemma 3.3. Let m # M1(M ) satisfy condition (K1) and . the
continuous function associated to m. Then

(a) Im(&)<+� if and only if & # M0 .

(b) I(&)=0 if and only if &=+_'_' with + # MT (M ). Moreover, if
m # MT (M ) and . is Holder continuous then I m(&)=0 if and only if
&=m_'_'.

Let + # MT (M ) and �� and +1 as in condition (K2). Take �=�� &.
where . is the continuous function in condition (K1) associated to m. We
have

P(�� )=P(,� &.&.)=P(.+�)

It follows from condition (K2) that

P(.+�)=|
M

(.+�) d+1+h+1
(T )
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Proposition 3.1. For any & # M0 there exists + # M0 , weakly close
to &, and

Im(&)>I m(+)&=, \=>0 (3.2)

Proof. Let & # M0 and a(x, y, z)=(d&)�(d?1 &_'_')(x, y, z). Let
=>0. Since ?1& # MT (M ), condition (K2) says that there exists a
T-invariant probability measure +1 , weakly close to ?1 &, and a Holder con-
tinuous function �� in M such that

h+1
(T )>h?1&(T )&

=
3

(3.3)

and +1 is the unique solution of

h&(T )+|
M

�� d&=P(�� )

Take + # M1(S) such that ?1 +=+1 and +<<?1+_'_'. Define
�� (x, y, z)#�� (x). Clearly �� is continuous and bounded in S. Consequently,
by writing �� (x)=(.+�)(x), the operator

9(&)=|
S

�(x, y, z) d&=|
M

[�� (x)&.(x)] d?1 &(x)

is weakly continuous. Then there exists a Le� vy neighborhood N =
+ such that,

for any +~ # N =
+ ,

} |S
�(x, y, z) d+(x, y, z)&|

S
�(x, y, z) d+~ (x, y; z) }<=

3

Since +<<?1+_'_' then

|
S

�(x, y, z) d+(x, y, z)=|
M

�(x) d?1 +(x)=|
M

�(x) d+1(x)

Similarly,

|
S

, �(x, y, z) d&(x, y, z)=|
M

�(x) d?1 &(x).

Hence & # N =
+ because +1 is weakly close to ?1&.
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The measure + can be chosen in M0 by assuming that ?12+=?13 +T &1.
The lower-semicontinuity of I( } ) and the fact that & # N =

+ implies that

I(&)>I(+)&
=
3

Moreover,

|
M

. d?1 &<| . d+1+
=
3

Recalling the definition of Im( } ) in (1.17) and the relation in (3.3) we get
(3.2). K

Let us define

M2 ={& # M0 :
d&

d?1 &_'_'
(x, y, z)=b(x, y, z) such that

_c, d with 0<c�b(x, y, z)�d<+�, \(x, y, z) # S= (3.4)

As in Lemma 2.9 in ref. 3 one can prove that for G an open subset of
M1(S),

inf
& # G

I m(&)= inf
& # G _ M2

I m(&) (3.5)

Fix + # M2 with (d+)�(d?1 +_'_')(x, y, z)=a(x, y, z) and let

a12(x, y)=|
R

a(x, y, z) d'(z)

Define

6$((x, y, z), d(x1 , y1 , z1))=
a(x1 , y1 , z1)
a12(x1 , y1)

6((x, y, z), d(x1 , y1 , z1)) (3.6)

where 6 is the transition function of (Vn)n�0 introduced in (1.8).
Associated to 6$ we define the functional

I$(&)=& inf
, # W

|
S

ln
6$,

,
d&, & # M1(S) (3.7)
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Proposition 3.2.

I$(&)={|S
ln

b
b12

d&&|
S

ln
a

a12

d&, if & # M0
(3.8)

+�, otherwise

where

b(x, y, z)=
d&

d?1 &'_'
(x, y, z), b12(x, y)=|

R

b(x, y, z) d'(z).

Proof. For , # W

6$,(x, y, z)#|
S

,(x1 , y1 , z1) 6$((x, y, z), d(x1 , y1 , z1))

=|
S

,(x1 , y1 , z1)
a(x1 , y1 , z1)
a12(x1 , y1)

6((x, y, z), d(x1 , y1 , z1))

=6(,a~ )(x, y, z)

with a~ (x, y, z)=a(x, y, z)�a12(x, y).
Let W* be the set of all nonnegative measurable functions in S,

bounded away from zero and infinity. Then

I$(&)=& inf
, # W

|
S

ln
6(,a~ )

,
d&

=& inf
, # W

|
S

ln
6(,a~ )

,a~
d&&|

S
ln a~ d& (3.9)

Since ,a~ # W*,

inf
, # W

|
S

ln
6(,a~ )

,a~
d&� inf

, # W* |
S

ln
6(,)

,
d&

On the other hand, given $>0, there exists ,� W* such that

|
S

ln
6,�

,�
d&< inf

, # W* |
S

ln
6,
,

d&+$
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Let ,�� =,� �a~ . Then ,�� # W* and 6,� �,� =6(,�� a~ )�,�� a~ . Hence,

inf
, # W* |S

ln
6,a~
,a~

d&� inf
, # W* |

S
ln

8,
,

d&

But, from Lusin's theorem (see ref. 10), the above infimum in W* is the
same as in W. Then,

inf
, # W

|
S

ln
6,a~
,a~

d&= inf
, # W

|
S

ln
6,
,

d&

Returning to (3.9), we get

I$(&)=I(&)&|
S

ln a~ d&

Moreover, according to Lemma 1, I(&)<+� if and only if & # M0 and the
result follows. K

Lemma 3.4. Let & # M1(S). Then & is invariant for 6$ if and only if
& # M0 and (d&)�(d?1 &_'_')(x, y, z)=a(x, y, z).

Proof. As in Lemma 2.5 in ref. 3, one can prove that I$(&)=0 if and
only if & is invariant for 6$.

Let & be invariant for 6$. Then I$(&)=0 and & # M0 . Let A_B_C be
a measurable rectangle. Then

|
S

6$((x, y, z), A_B_C ) d&(x, y; z)

=|
A_B_C

a(x, z, z1)
a12(x, y)

d'(z1) d?13 &(T &1(x), z)

=|
A_B_C

a(x, z, z1)
a12(x, y)

d'(z1) d?12 &(x, z) d'(z1)

=|
A_B_C

a(x, y, z) d?1 &(x) d'( y) d'(z)

and the result follows. K
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Theorem 3.1 (Lower Bound). Let G be open in M1(S). Then

�
n � +�

1
n

ln Qn
m, y, z(G)� & inf

& # G
I m(&)

Proof. Let G/M1(S) be open and & # G & M2 . From Proposition 3.1,
\=>0, _+ # M2 , _� # C(M ), and a Le� vy's neighborhood N =

+#S(+, =) such
that for any +~ # S(+, =),

} |X
�(x, y, z) d+(x, y, z)&|

S
�(x, y, z) d+~ (x, y, z) }<=

where �(x, y, z)#�(x). Moreover, & # S(+, =). Since G is open and & # G,
one can choose =>0 sufficiently small such that S(+, =)/G.

Define +n # M1(M ) by

d+n

dm
(x)=

exp[�n&1
k=0 �(T k(x))]

exp[nQn(.+�)]
, x # M (3.10)

where � # C(M ) can be taken as �=�� &., �� the function from condition
(K2) (see proof of Proposition 3.1) and

Qn(.+�)=
1
n

ln |
M

exp { :
n&1

k=0

�(T k(x))= dm(x) (3.11)

Notice that

dm
d+n (x)=exp[nQn(.+�)] } exp {& :

n&1

k=0

�(T k(x))= (3.12)

Let us introduce the sets

E =
n, +=[Ln # S(+, =)] (3.13)

where Ln is defined in (2.1). We have

Qn
m, y, z(S(+, =))=Pm, y, z(E =

n, +)=|
M

Pxyz(E =
n, +) dm(x)

=|
M

exp[nQn(.+�)]

_exp {& :
n&1

k=0

�(T k(x))= Pxyz(E =
n, +) d+n(x) (3.14)
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Define P$xyz( } ) as the probability measure on (S N, _(C)) induced by
the transition function 6$. We have

Pxyz(E =
n, +)=|

E =
n, +

`
n&1

k=0

a12(xk , yk)
a(xk , yk , zk)

dP$xyz(w)

Returning to (3.14),

Qn
m, y, z(S(+, =))=exp[nQn(.+�)] |

M _exp {& :
n&1

k=0

�(T k(x))=
_|

E =
n, +

`
n&1

k=0

a12(ak , yk)
a(xk , yk , zk)

dP$xyz(w)& d+n(x)

Notice that

exp {& :
n&1

k=0

�(T k(x))==exp {&n | � d`n
x=#exp[&n(�, `n

x)]

Moreover, in E =
n, + the empirical means Ln satisfy |�S � dLn&�S � d+|<=,

or equivalently, |�M � d`n
x&�M � d?1 +|<=. Therefore,

Qn
m, y, z(S(+, =))�exp[nQn(.+�)] exp[&n(�, ?1+)+=]

_|
M

|
E =

n, +

`
n&1

k=0

a12(xk , yk)
a(xk , yk , zk)

dP$xyz(x) d+n(x) (3.15)

Let us define

W(x, y, z)=ln
a(x, y, z)
a12(x, y)

Then

W(V0)+ } } } +W(Vn&1)=ln `
n&1

k=0

a(Xk , !k , !k+1)
a12(Xk , !k)

Also,

I(&)=|
S

W(x, y, z) d&(x, y, z)
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For each =$>0, let us define the set

F =$
n, +=_}�

n&1
k=0 W(Vk)

n
&|

S
W d+ }<=$& (3.16)

Then, in F =$
n, + , we have

`
n&1

k=0

a12(Xk , !k)
a(Xk , !k , !k&1)

>exp[&n[I(+)+=$]]

Therefore, for any =$>0, we conclude from (3.15) that

Qn
m, y, z(S(+, =))�exp[nQn(.+�)] exp[&n[(�, ?1+) +=]]

_exp[&n[I(+)+=$]] P$+n, y, z(E =
n, + & F =$

n, +)

By taking into account that Qn(.+�) � P(.+�) as n � +�, we
have

�
n � +�

1
n

ln Qn
m, y, z(S(+, =))�P(.+�)&| � d?1 +&I(+)&(=+=$)

+ lim
n � +�

1
n

ln P$+n, y, z(E =
n, + & F =$

n, +)

But P(.+�)=Qm(�),

Im(?1+)= sup
V # C(M ) {| V d?1 +&Qm(V )=

and

Qm(�)&| � d?1 +�&Im(?1 +)

So, if we prove that

lim
n � +�

P$+n, y, z(E =
n, + & F =$

n, +)=1 (3.17)

then

�
n � +�

1
n

ln Qn
m, y, z(s(+, =))�&Im(?1+)&I(+)&(=+=$)

=&I m(+)&(=+=$)
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Moreover, from Proposition 3.1, Im(&)>I m(+)&=. Then

�
n � +�

1
n

ln Qn
m, y, z(S(+, =))� &I m(&)&=$

Since S(+, =)/G for =>0 sufficiently small, we get

�
n � +�

1
n

ln Qn
m, y, z(G)� &I m(&)&=$

and the above inequality holds for all & # G and =$>0. Since =$ is arbitrary,
we get

�
n � +�

1
n

ln Qn
m, y, z(G)�& inf

& # G
I m(&) K

Now it remains to prove the limit in (3.17). By taking into account the
definition of +n and the limit in (1.13) we have for any V # C(M )

lim
n � +�

1
n

ln |
M

exp {n |
M

V(z) d`n
x(z)= d+n(x)

=P(.+�+V )&P(.+�)

=Q+n
(�+V )&Q+n

(�)#Q� �(V )

Let I� �( } ) be the Legendre transform of Q� �(V ). Then

Q� �(V )= sup
& # M1(M ) \| V d&&I� �(&)+

so that

I� �(&)= sup
V # C(M ) \| V d&&P(.+�+V )++P(.+�)

Since &� (.=�) d&&h&(T ) is the Legendre transform of P(.+�+V ) in
V we get

I� �(&)={| (.+�) d&&h&(T )+P(.+�), & # MT (M )

+�, otherwise
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However, according to the choice of +,

P(.+�)=| (.+�) d?1 ++h?1 +(T )

and ?1+ is the unique such measure. Hence, I� �(&)=0 if and only if &=?1+.
Moreover, I� �( } ) is convex and lower-semicontinuous in the weak topology.

Let us define

I$+(&)=I� �(?1 &)+I$(&), & # M1(S)

where I$( } ) is the functional in (3.9).

Lemma 3.6. I$+(&)=0 if and only if &=+.

Proof. We know that I� �(+~ )=0 if and only if +~ =?1 +. As in
Lemma 2.5 in Donsker and Varadhan (1975), one can prove that I$(&)=0
if and only if & is invariant for 6$. The result follows from Lemma 3.5. K

Let Q$+n, y, z( } ) be defined by

Q$+n, y, z(A)=P$+n, y, z[Ln # A], A # B(M1(S))

Similarly to Section 2, one can prove that

lim
n � +�

1
n

ln Q$+n, y, z(F )�& inf
& # F

I$+(&) (3.18)

for any closed F/M1(S).

Proposition 3.3. \=>0, \=$>0,

lim
n � +�

P$+n, y, z(E =
n, + & F =$

n, +)=1

where E =
n, + and F =$

n, + are the sets in (3.13) and (3.16) respectively.

Proof. The set F#[S(+, =)]c is closed in M1(S). The unique mini-
mum point of I$+( } ) is + (see Lemma 3.6) and + � [S(+, =)]c. Moreover,
I$+( } ) is weakly lower-semicontinuous in M1(S), has compact level sets, and
the upper bound in (3.18) holds. Hence, Theorem II.3.3 in ref. 4 allows one
to say that there exists N#N(F )>0 such that

Q$+n, y, z(F )�e&nN
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for all sufficiently large n. Therefore,

lim
n � +�

Q$+n, y, z(S(+, =))= lim
n � +�

P$+n, y, z(E =
n, +)=1

Now, let

A=$={& # M1(S) : } |S
W d+&|

S
Q d+ }<=$=

which is open in M1(S). Moreover + # A=$. Again, Theorem II.3.3 in ref. 4
implies that

lim
n � +�

Q$+n, t, z(A=$)= lim
n � +�

P$+n, y, z(F =$
n, +)=1 K

Remark 3.1. Up to now we have derived level 2 large deviations
estimates for (Vn)n�0 in the space (SN, _(C), Pm, y, z). The level-1 rate
functional for the autocorrelations Mn is obtained from the Contraction
Principle as one can see in ref 1.
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